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Abstract

Tracking basketball players using publicly available
broadcast footage poses a unique computer vision chal-
lenge due to partial occlusions, angled perspectives, and
limited field of view. I introduce HoopsRadar, a system
that combines multiple YOLOv8 models with homography
transformations to map ball and player positions from NBA
broadcast videos onto a to-scale, two-dimensional court
representation. Our approach detects players, the ball,
and court markings independently, using a custom-trained
model for each, and fuses their outputs via geometric map-
ping. To enhance temporal coherence and handle oc-
clusions, we integrate ByteTrack, a tracking-by-detection
framework with low-confidence association and Kalman fil-
tering. This system paves the way for downstream applica-
tions such as play classification, spacing evaluation, and
player influence analysis, even for researchers without ac-
cess to league-provided tracking data.

1. Introduction
Scouts in sports analyze hours of footage for player eval-

uation and strategy purposes. However, computer vision
models which are able to collect data from actions on the
court may generate valuable conclusions that the human eye
can miss. The use of computer vision in sports has grown
substantially in the last decade. In the United States, pro-
fessional leagues for baseball, basketball, and football have
all installed tracking technology and cameras in their stadi-
ums to generate more data for evaluating players. In bas-
ketball specifically, many NBA teams use several cameras
positioned in stadiums or a fish eye view camera which cap-
tures the whole court at once. This improves the accuracy
of computer vision tracking techniques. However, much of
this footage and data is not publicly available due to analyt-
ics competition between teams. The goal of this project is
to train models which can provide accurate and useful data
from easily available broadcast footage.

A model which tracks player and ball movement across

the court also could have applications in player evaluation
and entertainment media. Certain clips could be classified
under play types and accessed by search. Players could be
evaluated not just by end-of-play statistics, but by the effect
they are having with their movement on the court. Specifi-
cally, a model capable of using broadcast footage for track-
ing would be a significant resource for sports analysis for
researchers outside of the industry, since much of the track-
ing data collected by teams is unavailable.

In this project, I fine-tuned separate YOLOv8 models for
ball, player, and court detection. Each of these models was
used in conjunction to map the ball and player locations of
each frame of broadcast footage to a 2-D representation of
the basketball court.

2. Related Work
Previous attempts at ball/player tracking Difficulties usu-

ally arise with using broadcast footage for computer vision
tracking since the camera does not include the entire court
and shows the court from the side at an angle. Francia [1]
used CNNs to classify basketball actions, however the use
of YOLO models combined with homography in Pandya et
al. [2] seemed much more promising. However, this was
successful in American football, where the field is much
larger, contains far more identifiable features for homogra-
phy transformations, and public location data is available
for validation.

One main issue with using broadcast footage is that scal-
ing the locations on the court to a flat mapping is difficult
from just one angle. To do this effectively, homography
transformations on pixels are broadly used. The transforma-
tion matrix is created using at least shared 4 pixel locations
between the two images (the broadcast image and the flat
map). Large, common court/field markings are often used
as the pixel locations for creating this homography matrix,
as they can be easily accurately. However, if these mark-
ings are blocked by camera, player, referee, or fan move-
ment, the homography matrix cannot be calculated for that
frame. In Wen et al., [4] blocked locations of these mark-
ings are borrowed/averaged out from nearby frames, creat-
ing a smooth indication of where the markings are located
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in the image. This idea was crucial in my implementation
and application of homography transformations.

3. Methods
The HoopsRadar model structure (Figure 1) contains 3

separate YOLOv8 models for ball tracking, player tracking,
and court markings tracking (corners of the court, corners of
the paint, etc.). These models generate the bounding boxes
and tracking IDs for each object in an image.

Homography transformations with the location of the
court markings were then used to map the players onto a
to-scale, 2-D diagram of an NBA court from a bird’s eye
view. The tracker IDs of the players and the location of the
ball was used to determine who was the ball handler in the
image.

Figure 1. HoopsRadar Model Strucure

3.1. YOLO

YOLO (You Only Look Once) [3] is a real-time object
detection system that aims to detect and classify objects
within an image in a single forward pass through a con-
volutional network. YOLO divides the input image into a
grid and uses regression to predict bounding boxes and class
probabilities for each grid cell. It then uses non-maximum
suppression to filter out duplicate detections. The non-
maximum suppression is set by the IOU (intersection over
union) hyperparameter, which controls how much propor-
tion of overlapping area is allowed by multiple detections.
YOLO has fast inference times, which is vital in our appli-
cation where we apply inference to every frame in a video.
YOLO also is better at learning more general representa-
tions of objects and predicts fewer false positives, which is
preferred over false negatives in my context.

3.1.1 ByteTrack

The results of the player model is passed into the ByteTrack
[5] model. The ByteTrack model provides the tracking IDs
for each detection in each frame. The ByteTrack uses a
Kalman filter, a recursive algorithm used to estimate the
state of a linear system from noisy observations. It is widely

applied in object tracking to predict and update an object’s
position over time, accounting for uncertainty. ByteTrack
differs through a process that assigns IDs to detections with
both high confidence scores and low confidence scores so
that occluded objects are not ignored. This is good for our
application which includes many instances of players over-
lapping each other.

3.2. Video Mapping

3.2.1 Court Homography

A homography transformation describes the relationship
between two images of the same planar surface from dif-
ferent perspectives. A homography matrix maps points in
one image to corresponding points in another image. In our
case, the two images are the broadcast view of the court
and the our 2-D map. Below we see how the homography
matrix is used to calculate the new point:uv
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To calculate the homography matrix accurately, a mini-
mum of four pairs of non-collinear points is required. This
is because the homography matrix has eight degrees of free-
dom (8-parameters) that need to be determined to represent
the transformation between two images.{

u = h11x+ h12y + h13

v = h21x+ h22y + h23

(2)

The issue here is that finding 4 non-collinear points can
be difficult since many of the easily detectable court mark-
ings lie on the same lines. It means that the homography
transformation is not easily to calculate in many frames of
an broadcast clip.

The center of the bounding boxes from the court mark-
ings model were matched with corresponding points on a
to-scale, 2-D diagram of an NBA court from a bird’s eye
view. These points are used to create the homography ma-
trix.

The bounding boxes for each of the players was used
to find the points on the broadcast footage that represent
their relative positions. The x-coordinate of the player
was the mean value of the two sides of the bounding box.
The y-coordinate was chosen as the bottom of the bound-
ing box plus 5% of the total height of the bounding box.
This generally produced results close to each players’ feet.
In frames where a player disappears, the locations of that
player from surrounding frames is used. In addition, the
direction/momentum of player was used to determine the
most likely location.



3.2.2 Ball Handler Detection

To find the player who was the ball handler, we check if the
center of the bounding box for the ball detection was inside
the bounding box of any of the player detections for the cur-
rent frame and for the 10 frames on either side of the current
frame. If the player detection with the same tracker ID was
the most common result, it was marked as the ball handler
for that frame. Otherwise, no ball handler was marked.

4. Dataset and Features
All datasets were collected from Roboflow.
For ball detection, a combination of

two different ball detection dataset were
used to provide better model generalization
(https://universe.roboflow.com/basketballdetector/nba dataset,
https://universe.roboflow.com/gaga-lala-7qi2v/basketball-
ball-1ddrw). These datasets provided bounding box labels
for basketballs in broadcast footage. This provided 7529
labeled examples to train on.

For player detection, a single Roboflow dataset
was used. (https://universe.roboflow.com/betatracker/nba-
players-ronfv). This dataset provided bounding box labels
for the players and referees in broadcast footage. This pro-
vided 1968 labeled examples to train on.

For Court detection, a single Roboflow dataset was used.
(https://universe.roboflow.com/betatracker/nba-court). This
dataset provided bounding box labels for the baseline mark-
ers and the corners of the ”paint” in broadcast footage. This
provided 676 labeled examples to train on.

Each of these datasets were enhanced with augmented
data examples, including rotations and greyscale.

5. Results
The accuracy and precision of the ball, player, and court

detection models were evaluated on validation datasets from
Roboflow data:

Figure 2. Results

A precision above 92% was achieved for each of the
detection models. Recall on the ball detection model suf-
fered in comparison to high recall scores from the player
and court detection models.

As is seen in figures 3, 4, and 5, the model can effectively
plot the locations (shown in red pixels) of the players’ loca-
tions to a 2-D visualization using homography. The original
broadcast footage is transformed to match the scale of our
2-D map.

Figure 3. Example of Broadcast image frame

Figure 4. Our 2-D Map of the court (to-scale)

Figure 5. Example of Homography mapping of Figure 4 onto Fig-
ure 3

As is seen in the confusion matrices on the validation
data for each model (Figures 6, 7, 8), the models were
largely successful. However, two limitations standout. In
the ball detection model, we see that 13% of the basketballs
in the broadcast frames were not detected. So while the ball
model is very good at avoiding false positives, it has the
tendency to of false positives in the data



Figure 6. Confusion Matrix for Ball Classification

Figure 7. Confusion Matrix for Player Classification

Figure 8. Confusion Matrix for Court Markings Classification

6. Conclusion and Future Work

The HoopsRadar model performed fairly well at track-
ing player positions across the court and at generating visu-
alizations of the tracking on a flat 2-D mapping of the court.
The opens up many downstream tasks that could be vital in
player evaluation. The positions of the player with the ball
and the defenders could be used to judge the difficulty of
the shot.f the shot. Playcalls/strategies could be classified
based on player movement. Position can also be used to
calculate player velocity, spacing, and defensive presence
on the court.

Future improvements on the object detection models
themselves could include (if made available) evaluating lo-
cation data against official NBA data. This data could also
be used to determine the most accurate pixel used in the
players’ bounding boxes to be used in homograph transfor-
mations. The use of a RNN or transformer could also be
considered, information from neighboring/previous frames
could inform the location of the players during moments
of overlap. This could also help with classifiying specific
players on the court based on their jerseys or physical char-
acteristics.
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